V.P. \& R.P.T.P.SCIENCE COLLEGE PHYSICS DEPARTMENT

VALLABH VIDYANAGR

$6^{\text {TH }}$ SEMESTER B.Sc. PHYSICS US06CPHY07/08/09 PRACTICAL MANUAL BOOK

DECEMBER 2017

V.P. \& R.P.T.P. SCIENCE COLLEGE

VALLABH VIDYANAGAR

$6^{\text {h }}$ Semester B.Sc. Physics 2017-18
Courses;
US06CPHY07: Electricity, Magnetism and Nuclear Physics
US06CPHY08: Analog and Digital Circuits
US06CPHY09 : Optics, Solid State Physics and Numerical Analysis

No.	Experiment	Course	Page No.
1	Searl's Goniometer (variable distance)	PHY09	$\mathbf{3}$
2	Power Amplifier	PHY08	$\mathbf{5}$
3	Determination of Planck Constant.	PHY09	$\mathbf{7}$
4	L - by Owen's Bridge	PHY07	$\mathbf{9}$
5	Light Dependent Resistor (LDR)	PHY09	$\mathbf{1 1}$
6	Wein Bridge Oscillator	PHY08	$\mathbf{1 3}$
7	Bistable Multivibrator	PHY08	$\mathbf{1 5}$
8	Hall effect Measurements (Const. Probe Current)	PHY07	$\mathbf{1 7}$
9	e/m' of an Electron by Magnetron Method	PHY07	$\mathbf{1 9}$
10	Square Well Potential	PHY09	$\mathbf{2 1}$
11	Fabri-Parot Etalon	PHY09	$\mathbf{2 3}$
12	LVDT Characteristics	PHY07	$\mathbf{2 5}$
13	Characteristics of UJT	PHY08	$\mathbf{2 7}$
14	Op-Amp Applications	PHY08	$\mathbf{2 9}$
15	Op-Amp Parameters	PHY08	$\mathbf{3 1}$
16	High Resistance by Leakage	PHY07	$\mathbf{3 3}$
17	Binary Counters (4 bit)	PHY08	$\mathbf{3 5}$
18	Babinet Compensator	PHY09	$\mathbf{3 7}$
19	Carey-Foster Method (p)	PHY07	$\mathbf{3 9}$
20	e by Millikan's Oil Drop Method	PHY07	$\mathbf{4 1}$
21	Michelson Interferometer-II	PHY09	$\mathbf{4 3}$
22	Determination of Lattice Parameters	PHY09	$\mathbf{4 5}$

Books Recommended:

1. Advanced Practical Physics for Students B L Wosnop and H T Flint, Methuen and Co. Ltd., London
2. B.Sc. Practical Physics, C L Arora, S.Chand \& Co. Ltd., New Delhi
3. Advanced Practical Physics, M S Chauhan and S P Singh, Pragati Prakashan, Meerut
4. Advanced Practical Physics, S L Gupta and V Kumar, Pragati Prakashan, Meerut
5. An advanced course in practical Physics, D Chattopadhyay and P C Rakshit, New Central Book agency Pvt. Ltd.

EXP. NO.
1

SEARL'S GONIOMETER
(Variable Distance)
\qquad

Aim: To find the equivalent focal length (F) of a Two lens system for different distance (d) between the lenses. Draw a graph of $1 / \mathrm{F} \rightarrow \mathrm{d}$ and from it calculate the distance at which the system will work as a plane parallel plate.
Apparatus: Scale, two convex lenses, Goniometer, Mirron, Pin, Lamp.
Procedure:

1. Place the plane mirror with the Goniometer arm and ensure that arm scale reading is at the centre.
2. Adjusting the object pin to remove the parallax between object pin and its image in plane mirror.
3. Remove the mirror and position the lens arm and set the distance between the lenses (say 10 cm).
4. Remove the parallax between object pin and blue line on the scale
5. Now setting the object pin on first line ($\mathrm{h}=0.1 \mathrm{~cm}$) on LHS of the blue line record the corresponding reading on goniometer scale as (a).
6. Repeat for h ranging from $0.2 \mathrm{~cm}, 0.3 \mathrm{~cm} \ldots 0.5 \mathrm{~cm}$ on LHS.
7. Now setting the object pin on first line ($\mathrm{h}=0.1 \mathrm{~cm}$) on RHS of the blue line record the corresponding reading on goniometer scale as (b).
8. Repeat for h ranging from $0.2 \mathrm{~cm}, 0.3 \mathrm{~cm} \ldots 0.5 \mathrm{~cm}$ on RHS.
9. Now change the distance between lenses (say 8 cm) and repeat the experiment (step-4 to 6).
10.Perform the calculations as per the observation table.
10. Draw a graph of $1 / \mathrm{F} \rightarrow \mathrm{d}$ and from it calculate the distance at which the system will work as a plane parallel plate.

Goniometer arrangement:

Observation Table:

Distance	Obs.	Scale Between	Goniometer No.	heading	Focal Reading	Mean (a-b) $/ 2$	
Length	Focal						

		h cm	$\begin{gathered} \hline \text { LHS } \\ \mathbf{a} \\ \text { cm } \end{gathered}$	$\begin{gathered} \hline \text { RHS } \\ \mathbf{b} \\ \text { cm } \end{gathered}$	cm	$\begin{gathered} \mathbf{F} \\ =\left(\mathrm{h} / \mathrm{h}^{\prime}\right) 1 \\ \mathbf{c m} \end{gathered}$	Length F cm	$\begin{aligned} & 1 / \mathrm{F} \\ & \mathrm{~cm}^{-1} \end{aligned}$
	1	0.1						
	2	0.2						
10	3	0.3						
	4	0.4						
	5	0.5						
	1	0.1						
	2	0.2						
8	3	0.3						
	4	0.4						
	5	0.5						
	1	0.1						
	2	0.2						
6	3	0.3						
	4	0.4						
	5	0.5						
	1	0.1						
	2	0.2						
4	3	0.3						
	4	0.4						
	5	0.5						
	1	0.1						
	2	0.2						
2	3	0.3						
	4	0.4						
	5	0.5						

Graph and Calculations:

The equivalent focal length of the lens system is given by the relation :

$$
\frac{1}{F}=\frac{1}{F_{1}}+\frac{1}{F_{2}}-\frac{x}{F_{1} F_{2}}
$$

Putting $1 / \mathrm{F}=0$, we get $x=\mathrm{F}_{1}+\mathrm{F}_{2}$. The distance x is theoretical distance between lenses at which system work as a plane parallel plate. $\mathrm{OB}=x$ is the distance at which the system will work as a plane parallel plate.

Result:

The distance x is the theoretical distance between the lenses at which system work as a plane parallel plate is \qquad cm
EXP. NO.
2
POWER AMPLIFIER
(OPAMP IC TBA 810)

DATE:
\qquad
? -

Aim: To study the frequency response of an audio power IC operational amplifier.
Apparatus: Power amplifier circuit using IC TBA 810, Resistors, Capacitors, Audio Frequency Oscillator(AFO), Cathode ray Oscilloscope/ voltmeter, Connecting Wires.

Procedure:

1. Connect the Audio Frequency Generator output to the input of the circuit as shown.
2. Connect the CRO at the output terminals of the circuit as shown.
3. Switch ON the instruments.
4. Apply a sine wave (of $\mathrm{V}_{\mathrm{i}}=30 \mathrm{mV}$ peak to peak) and 100 Hz as an input signal.
5. Observe the output wave shape on CRO and note down the peak to peak amplitude $\left(\mathrm{V}_{\mathrm{o}}\right)$ of the output signal in the observation table.
6. Increase the input signal frequency towards 10 kHz in appropriate steps and note down the corresponding V_{o} in observation table.
7. Complete the measurements as per the observation table.
8. Determine the gain A of the amplifier and convert it in dB .
9. Plot the frequency response curve i.e. graph of gain in dB (Y -axis) against logf (X-axis).
10.Determine the bandwidth of the amplifier.

Circuit Diagram:

Observation Table:

Input signal voltage $V_{\text {in }}=\mathbf{3 0} \mathbf{~ m V}$ (peak to peak) $=\mathbf{0 . 0 3 V}$

| Obs. | Frequency | $\mathrm{V}_{\text {out }}$
 No. | Gain
 Hz | Volt | $\mathrm{A}=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |${$| Gain in dB |
| :---: |
| $\mathrm{A}_{\mathrm{dB}}=20 \log \mathrm{~A}$ |$}_{\text {logf }}$| | | |
| :---: | :--- | :--- |
| 1 | 100 | |
| | | |

2	200				
3	300				
4	400				
5	500				
6	1000				
7	2 K				
8	3 K				
9	4 K				
10	5 K				
11	6 K				
11	7 K				
11	8 K				
11	9 K				
11	10 K				
12	20 K				
13	30 K				
14	40 K				
15	50 K				

Graph and Calculations:

Plot the graph of logf against A_{dB}.
$\mathrm{A}_{\mathrm{dB} \text { max }}=\ldots \ldots$
$\left(\mathrm{A}_{\mathrm{dB} \text { max }}-3 \mathrm{~dB}\right)=$
$\log _{2}=\ldots$
Bandwidth=antilogf $\mathrm{f}_{2}=\ldots \ldots . . \quad \mathrm{KH}_{\mathrm{Z}}$

Result:

The bandwidth of the given audio power amplifier is $=$ KHz.

EXP. NO.
3

PLANCK CONSTANT BY LED
DATE: (LIGHT EMITTING DIODE)

Aim: To determine the value of Planck constant (h) by using the Light Emitting Diodes (LEDs).

Apparatus: LEDs of different colour, DC supply, CRO, Rheostat, Resistance Box, DC voltmeter, Connecting wires.

Procedure:

1. Connect the main cord to AC mains. (Do not switch it ON but keep it OFF).
2. Connect +ve terminal of power supply (1) to +ve terminal of DC voltmeter (3) and connect -ve terminal of power supply (2) to -ve terminal of DC voltmeter (4). Set the voltmeter range to 20 V .
3. Connect + ve and - ve terminal of power supply $\left(\begin{array}{l}1\end{array} \& 2\right)$ to + ve and -ve terminal of RED LED on the board respectively.
4. Now switch ON the AC mains and using switch (S), switch ON the power supply on the board.
5. Now increase the DC voltage slowly by variable resistance pot and observe the RED LED connected in the circuit. Stop as soon as LED just start to emit light. At this moment note the value of applied DC voltage shown in the DC voltmeter as the threshold voltage V_{t} for Red LED.
6. Disconnect the +ve and -ve terminals of LED and switch OFF power supply.
7. In this way repeat step- 3 to 6 and connect other LEDs to measure their threshold voltages.
8. From the observation table plot the graph and perform necessary calculations using given formula to determine the value of Planck constant h.
Circuit Diagram:

Basic Circuit
E: Cell
R: Resistor
R_{h} : Rheostat
D: LED
S: Switch

THEORY: - Light-emitting diodes (LEDs) convert electrical energy into light energy. They emit radiation (photons) of visible wavelengths when they are "forward biased" (i.e. when the voltage between the p side and the n -side is above the "turnon" voltage). This is caused by electrons from the " n " region in the LED giving up light as they fall into holes in the " p "region. If we measure the minimum voltage (threshold voltage) Vt required to cause current to flow and photons to be emitted, and we know (or measure) the wavelength of the emitted photons and use it to calculate the photon energy $\mathrm{h} v$ from the relation, $\mathrm{h} v=\mathrm{h}(\mathrm{c} / \lambda)=\mathrm{eVt}$.

Observation Table:

Obs. No.	Color of LED	Wavelength $\boldsymbol{\lambda} \mathbf{n m}$	$(\mathbf{1} / \boldsymbol{\lambda})$ $\mathbf{n m}^{-1}$	Threshold Voltage $\mathbf{V}_{\mathbf{t}}$ volt
1	Blue	470		
2	Green	525		
3	Yellow	580		
4	Orange	630		
5	Red	700		

Graph and Calculations: The photon energy is

$$
h v=h \frac{c}{\lambda}=e V_{t}
$$

where $h=$ Planck constant, $v=$ frquency of photon,
$c=$ velocity of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$e=$ charge of electron $=1.6 \times 10^{-19} \mathrm{C}$
$\lambda=$ wavelength of photon.

$$
\therefore h=\frac{e V_{t} \lambda}{c}
$$

From the graph slope $=\frac{A B}{B C}=\frac{V_{t}}{1 / \lambda}=\ldots \ldots \ldots$.
$\therefore h=\frac{1.6 \times 10^{-19} \times V_{t} \times \lambda}{3 \times 10^{8}}=h=\frac{1.6 \times 10^{-19}}{3 \times 10^{8}} \times$ slope $=\ldots \ldots \ldots .$.
Percentage error in $h=\frac{\text { Calculated Value }- \text { Standard value }}{\text { Standard value }} \times 100 \%$
\qquad $x 100 \%=$ \qquad \%

- Standard value of $h=6.63 \times 10^{-34} \mathrm{Js}$

Results:

The calculated value of Planck constant is $h=$ \qquad .\& it is with error of \qquad \%.
EXP. NO.
L BY OWN'S BRIDGE
DATE:
4

Aim: To determine the self-inductance (L) of a coil using owns bridge.
Apparatus: Inductor coil, Resistance Boxes (Two 10,000 ohm box), two standard capacitors, null detector (voltmeter), AFO, Connecting wires.

Procedure:

1. Make electrical connections as shown in the circuit diagram.
2. Select certain value of P (say 400Ω) and calculate corresponding value of Q using the given formula.
3. Set this value of Q and balance the bridge using variable resistance R .
4. When the bridge is balanced i.e. voltage across point A and B is zero or minimum note the value of this balancing resistance R.
5. Repeat the step 2 to 4 of the experiment for six more different values of P.
6. Using the given formula determine the self-inductance of the given inductor coil.

Circuit Diagram:

Observation Table:

Here $\mathbf{Q}=\left[\mathbf{P} \times\left(\mathbf{C}_{1} / \mathrm{C}_{2}\right)-\mathrm{S}\right] \Omega$, where $\mathrm{S}=$ resistance of inductor coil=$=\ldots \ldots \Omega$

Obs. No.	Resistance P Ω	Resistance $\mathrm{Q}=\left[\mathrm{P} \times\left(\mathrm{C}_{1} / \mathrm{C}_{2}\right)-\mathrm{S}\right]$ Ω	Balancing Resistance R Ω	Inductance $\begin{gathered} \mathrm{L}=\mathrm{PRC}_{1} \\ \mathrm{H} \end{gathered}$	Mean L H
1					
2					
3					
4					
5					
6					
7					

Calculations:

$\mathrm{C}_{1}=\ldots \ldots \ldots \ldots . . \mu \mathrm{f}$
$\mathrm{C}_{2}=\ldots \ldots \ldots \ldots \ldots . . \mu \mathrm{f}$
Resistance $\mathrm{Q}=\left[\mathrm{Px}\left(\mathrm{C}_{1} / \mathrm{C}_{2}\right)-\mathrm{S}\right] \Omega$
Inductance of the given coil is $\mathrm{L}=\mathrm{PRC}_{1}$

Results:

The self-inductance of the given inductor coil is $\mathrm{L}=$ H

EXP. NO. LIGHT DEPENDANT RESISTOR (LDR) DATE:

Aim: To study the characteristics of a Light Dependent Resistor (LDR).
Apparatus: Light Source, LDR, Resistance Box, Connecting wires.

Procedure:

1. Connect the LDR and the Load resistance as shown in the circuit diagram.
2. Keep distance (d) of 100 cm between the LDR and the light source.
3. Note down the distance d and corresponding resistance R in the observation Table.
4. Now, decrease the distance d by 5 cm and note the corresponding resistance in the observation Table.
5. Similarly, set the d as per the observation table and note corresponding resistance in the observation Table.
6. Perform the required calculations and complete the observation table.
7. Plot a graph of $\ln \mathrm{R}$ against $\ln \mathrm{I}$.
8. Determine the values of parameters m from the slope and K from intercept of the graph.
9. Verify the equality of ratio of intensities and ratio of corresponding resistances.

Circuit Diagram:

LDR: Light Dependent Resistor
\mathbf{R}_{L} : Load Resistor

THEORY: - A photoresistor or light dependent resistor (LDR) is a resistor whose resistance decreases with increasing incident light intensity. A photoresistor is made of a high resistance semiconductor. If light falling on the device is of high enough frequency, photons absorbed by the semiconductor give bound electrons enough energy to jump into the conduction band. The resulting free electron (and its hole partner) conduct electricity, thereby lowering resistance.

Observation Table:

Obs. No.	Distance $\mathbf{d ~ c m}$	Resistance $\mathbf{R} \boldsymbol{\Omega}$	Intensity of light $\mathbf{I}=\left(\mathbf{1} \mathbf{d}^{\mathbf{2}}\right)$	lnR	lnI
1	100				
2	95				

3	90				
4	85				
5	80				
6	75				
7	70				
8	65				
9	60				
10	55				
11	50				
12	45				
13	40				
14	35				
15	30				
16	25				

Calculations:

The intensity I of the light is, $I \propto \frac{1}{d^{2}} \quad \therefore I=K \frac{1}{d^{2}} \quad$, where K is constant of proportionality.
For $K=1$, we have $I=\frac{1}{d^{2}}$.
The resistance R is given by, $\quad R=K I^{-m}, \quad \therefore \ln R=\ln K-m \ln I$ For $K=1, \ln K=0 . \quad \therefore \ln R=-m \ln I$
we can write $\ln R_{1}=-m \ln I_{1}$ and $\ln R_{2}=-m \ln I_{2}$ $\therefore \ln R_{2}-\ln R_{1}=-m \ln I_{2}-\left(-m \ln I_{1}\right)$ $\therefore \ln R_{2}-\ln R_{1}=-m\left(\ln I_{2}-\ln I_{1}\right)$
$\therefore \ln \frac{R_{2}}{R_{1}} \quad=-m \ln \frac{I_{2}}{\mathrm{I}_{1}}$
$\therefore \frac{R_{2}}{R_{1}}=\left[\frac{I_{2}}{I_{1}}\right]^{-m}$

$$
\therefore \frac{R_{2}}{R_{1}}=\left[\frac{I_{1}}{I_{2}}\right]^{m}
$$

From Graph:

$m=$ Slope $=\mathrm{AB} / \mathrm{BC}=\ldots \ldots \ldots .$.
$\ln K=\ldots \ldots . . \quad K=\operatorname{antiln} K=\ldots \ldots$

Results:

For given LDR the constants $m=$ \qquad and $\mathrm{K}=$

Aim: To study the Wein Bridge Oscillator Circuit.
Apparatus: Power Supply, Resistors, Capacitors, Transistors(AC126), CRO,

Procedure:

1. Connect the CRO at the output terminals of the circuit as shown.
2. Use the value of $R_{1}=R_{2}=R$ as given.
3. Connect the Capacitor $\left(\mathrm{C}_{1}\right)$ using the selector switch.
4. Using the gain contol knob $\left(\mathrm{Rh}_{1}\right)$ set the proper gain so that a sine wave is obtained on the CRO.
5. Measure the time period of the output sine wave and record it.
6. Determine the frequency of the output sine wave.
7. Similarly select the other Capacitors $\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right)$ using the selector switch and using gain contol knob $\left(\mathrm{Rh}_{1} \& \mathrm{Rh}_{1}\right)$ respectively, set the proper gain so that a sine wave is obtained on the CRO.
8. Measure the time period of the output sine wave and record it.
9. Determine the frequency of the output sine wave.
10. Compare the theoretically calculated frequency of the oscillation with the measured/observed frequencies
11. Write your conclusions.

Note: Trace any one generated output sine wave on a paper and attach it.

Circuit Diagram:

Observation Table:

Obs.	Resistance	Capacitance	No. of	Time	Time	Observed	Theoretical
No	$\mathrm{R}=\mathrm{R}_{1}=\mathrm{R}_{2}$	C	Divisions	Scale	Period	Freq.	Freq.
$\mathrm{K} \Omega$	$\mu \mathrm{F}$	d	T	$\mathrm{T}=\mathrm{dxt}$	$F_{0}=(1 / \mathrm{T})$	$F_{\mathrm{th}} \mathrm{Hz}$	

				$\mathrm{ms} / \mathrm{div}$	sec	Hz	
1	4.7						
2	4.7						
3	4.7						

Calculations:

Frequency of oscillation is

$$
\mathrm{F}_{\mathrm{th}}=1 /(2 \pi \mathrm{RC}) .
$$

Observfed Frequency of oscillation is
$\mathrm{F}_{\mathrm{o}}=1 / \mathrm{T}$, where $\mathrm{T}=$ Time Period $=$ no. of division on X -axis $(\mathrm{d}) \mathrm{x}$ time scale (t)

Result:

The given oscillator circuit generates the frequency of \qquadBISTABLE MULTIBRRATOR
\qquad

Aim: To Study Bistable multivibrator circuit.
Apparatus: Power Supply, Resistors, Capacitors, Transistors(BC547), CRO, Connecting wires, Frequency Generator (AFO).Scale, two convex lenses, Goniometer, Mirron, Pin, Lamp.

Procedure:

1. Connect the AFO output to the input of the circuit as shown.
2. Connect the CRO at the output terminals of the circuit as shown.
3. Apply a square wave of 2 V with frequency shown in observation table.
4. Measure the time period of the output square wave signal and record it.
5. Determine the frequency of the output square wave signal.
6. Similarly apply the other frequencies and determine the frequency of corresponding output square wave signals.
7. Compare the input and output frequencies and determine the mode of the circuit as either NORMAL or BISTABLE.
NOTE: Trace one of the input signal and its output square wave signal on a paper and attach it.

Circuit Diagram:

Observation Table:

Obs. No	Applied Frequency F_{0} Hz	No. of division d	Time Scale t $\mathrm{ms} /$ div	Time Period T=dxt sec	Observed Frequency $\begin{gathered} \mathrm{F}_{0}=(1 / \mathrm{T}) \\ \mathrm{Hz} \end{gathered}$	Mode Normal or Bistable
1	700					

2	800					
3	900					
4	1000					
5	1100					
6	1200					
7	1300					

- In normal mode, observed frequency F_{o} will be nearly same as input frequency and in bistable mode, observed frequency F_{o} will be half of the input frequency.

Calculations:

Time Period T = no. of division on \mathbf{X}-axis (d) \mathbf{x} time scale (\mathbf{t})

Result:

The given circuit triggers to bistable mode at input signal of Hz .

EXP. NO. HALL EFFECT MEASUREMENTS - II	
$\mathbf{8}$	(CONSTANT PROBE CURRENT)

Aim: To study Hall Effect and to determine; (1) Hall coefficient (R_{H}) and (2) Carrier Concentration (η) of a given material.
Apparatus: Hall effect Set-up, (Ammeter,Voltmeter, Coils,Semiconductor
Material probe , Power Supply).

Procedure:

1. Check the Hall effect measurement set-up for proper connections.
2. Switch ON the set-up kit. Set-up zero correction if required using zero adjust knob.
3. Keep the current selector switch in ($0-100 \mathrm{~mA}$) range. Using the knob apply a probe current I_{C} (say 40 mA) to the probe.
4. Now shift the current selector switch in ($0-500 \mathrm{~mA}$) range. Using the knob, apply a magnetization current I_{m} (say 50 mA) to the coils to set-up a certain magnetic field (say 256 Gauss for this set-up) across the sample.
5. Measure the Hall voltage produced.
6. Now, increase magnetization current to $100,150 \ldots \ldots$ upto 500 mA to increase the magnetic field and measure the corresponding Hall voltage produced.
7. Repeat the experiment for other values of Probe current as per the obs. table.
8. Draw the necessary graph and perform the calculations.
9. Using the given formula determine the Hall coefficient and Carrier concentration for the given material and express their mean values in results.

Circuit Diagram \& Hall effect phenomenon :

Observation Table:

Obs.	Magnetization	Magnetic	Hall Voltage V_{H} in mV for Probe current		
No. Current $\mathrm{I}_{\mathrm{m}} \mathrm{mA}$	Field Gauss	$\mathrm{I}_{\mathrm{c}}=40 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{c}}=40 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{c}}=40 \mathrm{~mA}$	
1	50	256			
2	100	438			
3	150	630			
4	200	830			

5	250	1028			
6	300	1216			
7	350	1425			
8	400	1529			
9	450	1795			
10	500	1984			

Graph and Calculations:

Thickness of the Hall Plate $\mathbf{t}=0.014 \mathrm{~cm}$
Electron charge $\mathrm{e}=\underline{1.6 \times 10^{-19} \mathrm{Coul}}$

1. Hall Coefficient:

$$
\begin{aligned}
\mathrm{R}_{\mathrm{H}} & =\frac{\mathrm{V}_{\mathrm{H}} \times \mathrm{t}}{\mathrm{~B} \times \mathrm{I}_{\mathrm{C}}} \times 10^{8} \frac{\mathrm{~cm}^{3}}{\mathrm{Coul} .} \\
& =\frac{\mathrm{t}}{\mathrm{I}_{\mathrm{C}}} \times \text { slope } \times 10^{8} \frac{\mathrm{~cm}^{3}}{\text { Coul. }} \\
& =\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \\
& =\quad \frac{\mathrm{cm}^{3}}{\text { Coul. }}
\end{aligned}
$$

2. Carrier Concentration:

$$
\begin{aligned}
\eta= & \frac{1}{R_{H} x e} \quad \frac{\text { charges }}{c m^{3}}=\ldots \ldots \ldots \\
& =\ldots \ldots \ldots \quad \frac{\text { charges }}{c m^{3}}
\end{aligned}
$$

Results:

For the given material, 1. Hall Coefficient, $\mathrm{R}_{\mathrm{H}}=$. \qquad
2. Carrier concentration, $\eta=\ldots .$.

EXP. NO. e/m OF ELECTRON BY MAGNETRON DATE:

Aim: To determine the value of e/m of electron by Mgnetron method.
Apparatus: Solenoid, Rheostate, , Ammeter ($0-500 \mathrm{~mA}$ and $0-250 \mu \mathrm{~A}$) Voltmeter, Magnetron Tube with Power supply, Battery $(0-24 \mathrm{~V})$.

Procedure:

1. Connect the solenoid circuit and magnetron tube circuit as shown in the diagram.
2. The position of the magnetron tube should be at the centre of the solenoid.
3. From the power supply apply anode potential V of certain value (say 2 V).Apply a solenoid current I_{s} (say 50 mA) using the rheostat to set-up magnetic field within solenoid.
4. Note the corresponding plate current.
5. Now increase the solenoid current I_{s} (to 100 mA) and measure the corresponding anode plate current I_{a}.
6. In this manner, increase the solenoid current I_{s} (to $150,200 \ldots 500 \mathrm{~mA}$) and measure the corresponding plate current.
7. Repeat step 3 to 6 for two different values of anode potential (say $\mathrm{V}=1 \& 4 \mathrm{~V}$).
8. Plot the graphs (on same scale) and determine the values of critical current I_{c} from each graph (i. e. for each anode potential V).
9. Perform the calculations as per formula and determine the value of critical magnetic field H_{c} for each anode potential V.
10.Using given relation determine value of e / m of electron for each anode potential V.
11.Mention the mean value of e / m as your result.

Circuit arrangement:

E: Battery ($0-24 \mathrm{~V}$)
R_{h} : Rheostat
K: Cathode
P: Plate
H.T. Low Tension supply

Observations: 1 . No.of turns per cm length of the solenoid $=n=\underline{37.3}$
2. Radius of the anode $=R_{a}=\underline{0.625} \mathrm{~cm}$

Observation Table:

Obs. No.	Solenoid Current I_{s}		Anode Current I_{a}	
	mA	$\times 10^{-3} \mathrm{~A}$	$\mu \mathrm{~A}$	$\times 10^{-6} \mathrm{~A}$
1	50			
2	100			

3	150			
4	200			
5	250			
6	300			
7	350			
8	400			
9	450			
10	500			

Graph and Calculations:

Formula:

The critical magnetic field Hc is given by;
$H_{c}=\frac{4 \pi n I_{c}}{10}=\frac{4 \pi(37.3) I_{c}}{10}$
Where I_{c} is critical current determined from graph.

$$
H_{c}=.
$$

The ratio e / m is given by;

$$
\begin{aligned}
& e / \mathrm{m}=\frac{8 \times V}{H_{c}^{2} \times R_{a}^{2}} \times 10^{8} \mathrm{emu} / \mathrm{gm} \\
\therefore & e / \mathrm{m}=\frac{8 \times(\mathrm{r}}{\left(\mathrm{)}^{2} \times(0.625)^{2}\right.} \times 10^{8} \mathrm{emu} / \mathrm{gm}=\ldots \ldots e m u / \mathrm{gm}
\end{aligned}
$$

Result:

For the electron ,the ratio e/m = \qquad emu/gm.
EXP. NO.
$\mathbf{1 0}$
SQUARE WELL POTENTIAL
(Energy eigen values of a proton)

DATE:
Aim: To determine the Energy Eigen values of a proton in a onedimensional square well potential.

Apparatus: Scientific Calculator

Given A proton of mass $\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$ is inside a one dimensional box
Problem: of potential having depth $\mathrm{V}_{\mathrm{o}}=30 \mathrm{MeV}$ \& half width $\mathrm{a}=4 \times 10^{-15}$ meter. Consider that the particle has potential energy function in the shape of a square well with vertical sides. Find the Energy Eigen values of the proton.

Procedure:

1. From the given data, find $\Delta=\hbar^{2} / 2 \mathrm{~m}_{\mathrm{p}} \mathrm{a}^{2}$, where $\hbar=1.0544 \times 10^{-34} \mathrm{~J}$-sec, $(\hbar=$ Planck's constant $h / 2 \pi), m_{p}=$ mass of proton and $\mathrm{a}=$ half width of the potential well.
2. Find (Δ / Vo) and convert it into eV . Determine $(\Delta / \mathrm{Vo})^{1 / 2}$.
3. Determine the values of $\beta \mathrm{a},|\cos (\beta \mathrm{a})|$ and $|\sin (\beta a)|$ as per the observation table.
4. Plot $|\cos (\beta a)|$ against β a on a graph paper (which gives a curve).
5. Plot $|\sin (\beta a)|$ against β (which gives a curve) on the same graph paper .
6. Plot $\left(\Delta / V_{o}\right)^{1 / 2} \beta$ a, against β a on the same graph (which gives a straight line).
7. For the intersection points of the curves and the straight find the values of $\left(\beta_{\mathrm{n}} \mathrm{a}\right)$ as shown in graph. $[\beta=\beta \mathrm{n}(\mathrm{n}=0,1,2, \ldots)]$.
8. Find the corresponding allowed energy eigen values for each of β_{n} a using the relation, $\left.\mathrm{E}=\left[\left(\beta_{\mathrm{n}} \mathrm{a}\right)^{2}(\Delta / \mathrm{Vo})-1\right)\right] \mathrm{V}_{\mathrm{o}}$ and tabulate your results.

Note: Students are required to perform the experiment with $\mathbf{V}_{0}=30 \mathrm{MeV} \&$

 mention results accordingly.- Following sample example is given to understand the procedure only.

SAMPLE CALCULATIONS:

Suppose for such as above proton; mass of proton of $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$, Potential depth $\mathbf{V}_{\mathbf{0}}=\mathbf{2 5} \mathbf{M e V}=25 \times 10^{6} \mathrm{eV}$, half width $\mathrm{a}=4 \times 10^{-15}$ meter.

$$
\begin{gathered}
\Delta=\frac{(h / 2 \pi)^{2}}{2 m_{p} a^{2}}=\frac{\left(6.602 \times 10^{-34} / 2 \times 3.14\right)^{2}}{2 \times 1.6 \times 10^{-27} \times\left(4 \times 10^{-15}\right)^{2}}=2.06 \times 10^{-13} \\
\therefore \frac{\Delta}{V_{0}}=\frac{2.06 \times 10^{-13}}{25 \times 10^{6}}=8.24 \times 10^{-21} \mathrm{~J} \\
\therefore \operatorname{In} e V, \quad \frac{\Delta}{V_{0}}=\frac{8.24 \times 10^{-21} \mathrm{~J}}{1.6 \times 10^{-19}}=0.0515 \mathrm{eV} \\
\therefore\left(\frac{\Delta}{V_{0}}\right)^{1 / 2}=(0.0516)^{1 / 2}=0.226
\end{gathered}
$$

Observation Table:

- Calculate $|\cos (\beta a)|$ for 0 to $\pi / 2, \quad \pi$ to $3 \pi / 2, \quad 2 \pi$ to $7 \pi / 2 \ldots$. and
- Calculate $|\sin (\beta \mathrm{a})|$ for $\pi / 2$ to $\pi, \quad 3 \pi / 2 \pi$ to $2 \pi, \ldots$.

No.	$\beta \mathrm{a}$	$\|\cos (\beta \mathrm{a})\|$	$\|\sin (\beta \mathrm{a})\|$	$\left(\Delta / \mathrm{V}_{\mathrm{o}}\right)^{1 / 2} \beta \mathrm{a}$
1	$0.1 \times \pi / 2=\quad 0.157$	0.987	-	0.035
2	$0.2 \times \pi / 2=$		-	
3	$0.3 \times \pi / 2=$		-	
\ldots	$\ldots \ldots .$.		-	
\ldots	$1 \times \pi / 2=\quad 1.57$	0	-	0.356
\ldots	$1.1 \times \pi / 2=\quad 1.727$	-	0.987	0.392
\ldots	$\ldots \ldots .$.	-		

\ldots	$2 \times \pi / 2=$	3.14	-	0	0.71
\ldots	$2.1 \times \pi / 2=$	3.297	0.987	-	0.75
\ldots	$\ldots \ldots \ldots$.		-		
\ldots	$5 \times \pi / 2=$	7.85	0	-	1.78

Graph \& Calculations:

The $\mathrm{n}^{\text {th }}$ energy eigen value $\left.\mathrm{E}_{\mathrm{n}}=\left[\left(\beta_{\mathrm{n}} \mathrm{a}\right)^{2}(\Delta / \mathrm{Vo})-1\right)\right] \mathrm{V}_{\mathrm{o}} \mathrm{MeV}$.
First intersection point gives, $\beta_{1} \mathrm{a}=1.256$.
Hence, $\left.\mathrm{E}_{1}=\left[(1.256)^{2} \mathrm{x}(0.0515)-1\right)\right] \times 25=-22.96 \mathrm{MeV}$.
Similarly we can calculate E_{2} and E_{3} for other intersection points.
Note: Students are required to perform the experiment with $V_{0}=30 \mathrm{MeV}$.

Results:

Energy Level	β_{n} a for $\left(V_{0}=25 M e v\right)$	$\beta_{\mathrm{n}} \mathrm{a}$ for $\left(\mathrm{V}_{0}=30 \mathrm{Mev}\right)$	Eigen value (for $\left.V_{0}=25 \mathrm{Mev}\right) \mathrm{MeV}$	Eigen value $\left(\right.$ for $\left.\mathrm{V}_{0}=30 \mathrm{Mev}\right) \mathrm{MeV}$
0	0	0	$E_{0}=-25.00$	$\mathrm{E}_{0}=$
1	1.256		$E_{1}=-22.96$	$\mathrm{E}_{1}=$
2	2.512		$E_{2}=-16.85$	$\mathrm{E}_{2}=$
3	3.768		$E_{3}=-6.67$	$\mathrm{E}_{3}=$

EXP. NO. FABRY PEROT ETALON DATE:
Aim: To determine the thickness of a air film between the plates of a Fabry Perot Etalon.
Apparatus: Fabry Perot Etalon, Spectrometer, Condensing lens, Reading lamp, Sodium lamp.

Procedure:

1. Adjust the telescope of the spectrometer for parallel rays.
2. Now arrange the aperture of source, the centre of the lens the center of F.P. etalon and centre of the objective of the telescope at the same heights and colinear.
3. Focus the core of the rays from convex lens at the middle of the F.P. etalon plates.
4. The circular rings will be observed through the telescope.
5. Adjust by the leveling screws of prism table and the telescope till the pattern is symmetric and travelling in the field of view.
6. Coincide the vertical cross wire at the middle of the $\mathrm{n}^{\text {th }}$ bright ring on the left hand side and note down the spectrometer reading.
7. Now again adjust the cross wire on ($\mathrm{n}-1)^{\text {th }}$ ring and note down the reading. Take the reading till the cross wire crosses the centre of the pattern and up to the middle of $\mathrm{n}^{\text {th }}$ ring on the right hand side.

Theory:

The etalon essentially consist of two plane parallel, optical and semi silvered glass plates which are fixed at a suitable distance. The outer surface are made slightly wedge shaped. So that any interface pattern due to these surfaces may fall out of view. The interference of light which is reflected and transmitted at the plane parallel boundaries of a thick plate of a media, from the fringes. This type of interference fringes are known as Haidinger fringes because they were first described by Haidinger.

If t is distance between two plates, the path difference between any two consecutive transmitted beams is $2 t \cos \theta$ and corresponding phase difference is given by ,

$$
\emptyset=\frac{2 \pi}{\lambda} \times 2 t \cos \theta
$$

Two transmitted beams interfere constructively or distractively depending on their relative path difference.

For constructive interference, we have the path difference

$$
2 \mu t \cos \theta=n \lambda \quad(\text { for maxima })
$$

Here $\mathrm{n}=$ the order of rings; $\mu=$ the refractive index of medium between etalon plates.

For air $\mu=1$, so we have, $\quad 2 \boldsymbol{t} \boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}=\boldsymbol{n} \boldsymbol{\lambda}$

Ray diagram:

Observation Table:

$\begin{aligned} & \text { Obs } \\ & \text { No. } \end{aligned}$	No of rings	Spectrometer reading		Angular displacement $\theta^{\prime}=a \sim b$	Angular radius	$\cos \theta$
		L.H.S	R.H.S			

		a	b	(angular diameter)	$\theta=\frac{\theta^{\prime}}{2}$	
1	15					
2	14					
3	13					
4	12					
5	11					
6	10					
7	9					
8	8					
9	7					
10	6					
11	5					

Graph and Calculations:

Plot the graph $\cos \theta \rightarrow n$ and find out the slope ' m ' of the graph

$$
\text { slope } m=\frac{A B}{B C}=\frac{\cos \theta}{n}
$$

Using the following relation calculate the thickness ' t ' of the air film in the F.P. etalon.

$$
2 t \cos \theta=n \lambda
$$

where $\lambda=5893 A^{o}$ for Sodium light.

$$
\therefore t=\frac{\lambda}{2} \cdot \frac{n}{\cos \theta}=\frac{\lambda}{2 \times \text { slope }}=\frac{5893 \times 10^{-8}}{2 \times \text { slope }}=
$$

Result:

The thickness of the air film i.e. separation between the plates of the given FabryPerot etalon is $\mathrm{t}=$ \qquad cm
EXP. NO.
LVDT CHARACTERISTICS
DATE:
12 (Linear Variable Differential Transducer)
Aim: To study the characteristics of a LVDT (Linear Variable Differential Transducer).
Apparatus: LVDT Set-up kit, (Audio frequency generator, Voltmeter, LVD transformer, displacement meter, resistors, rheostat), CRO.

Procedure:

1. Connect the LVDT kit to the AC mains and switch it ON.
2. Connect the First Channel of dual trace CRO to the output of the sine wave oscillator on the kit board and observe sine wave of $\sim 4 \mathrm{KHz}$ frequency on CRO. Set the amplitude of this signal at maximum ($\sim 10 \mathrm{~V} p p$).
3. Now apply this sine wave to the primary (input) of the LVDT by connecting
input terminals of primary to the output terminals of the sine wave oscillator.
4. Now connect the output of the LVDT i.e. terminal A and C to the second Channel of dual trace CRO. You should observe same sine wave but with 180° phase shift.
5. Note the amplitude (voltage) of this signal which is the output of LVDT when shaft (i.e. core is at right end)) is not shifted.
6. Now slowly shift the position of the LVDT shaft at different positions (d) as per observation table Part 1 and record the amplitude of the corresponding output signal $\left(\mathrm{V}_{0}\right)$. Observe the Null point and phase of the output signal.
7. Plot the graph of displacement (d) against output voltage V_{o}.
8. Now connect the output terminals A, B and C of the LVDT to the LVDT Detector circuit as shown. Calibrate the output of the LVDT to 210 mm by adjusting the output potentiometer of the detector circuit.
9. Connect the output of the LVDT Detector circuit i.e. terminal E and F to the displacement indicator digital meter.
10. Now slowly shift the LVDT shaft and set different positions (D mm) using displacement indicator meter and record output voltage $\mathrm{V}^{\prime}{ }_{\mathrm{o}}$ in mV for each displacement as per observation table Part-II.
11. Plot graph of displacement d^{\prime} (mm) against $\mathrm{V}^{\prime}{ }_{\mathrm{o}}$ in mV and check the linearity.
12. Determine the residual voltage of the given LVDT.

Circuit Diagram:

Observation Table: Displacement $=\mathrm{dmm}$ and Output $=\mathrm{V}_{0}$ volt

Part 1

Obs. No.	d mm	Output V_{0} volt
1	20	
2	18	
3	16	
4	14	
5	12	
6	10	
7	8	
8	6	
9	4	
10	2	
11	0	

Obs. No.	d mm	Output V_{0} volt
12	-2	
13	-4	
14	-6	
15	-8	
16	-10	
17	-12	
18	-14	
19	-16	
20	-18	
21	-20	

Graph :

Plot the graph of d against V_{0} (Part 1) Plot the graph of D against V_{0}, (Part 2)

Part 2

Obs. No.	Displacement meter reading D mm	$\mathrm{V}_{0}{ }^{\prime}$ volt
1	20	
2	15	
3	10	
4	5	
5	0	
6	-5	
7	-10	
8	-15	
9	-20	

Results:

The residual voltage of the given LVDT is. \qquad

EXP. NO. UNIJUNCTION TRANSISITOR (UJT)

DATE:
...............

13

 CHARACTERISTICSAim: To determine the characteristics of a UJT.
Apparatus: Regulated Power Supply (0-30V, 1A), UJT 2N2646, Resistors 10k Ω, $47 \Omega, 330 \Omega$, Multimeters ,Connecting Wires.

Procedure:

1. Connect the circuit as shown in circuit diagram.
2. First set the $V_{B B}=0$.
3. Set the current I_{E} at 0.1 mA and record the corresponding voltage V_{E}.
4. Now increase the I_{E} to 0.2 mA and record corresponding voltage V_{E}.
5. In this way, perform the experiment as per the observation table
6. Draw the characteristic curve as shown using the observation table.

UJT Parameters:

- UJT has only one pn junction. It has an emitter and two bases, B1 and B2.
- $r_{B 1}^{\prime}$ and $r_{B 2}^{\prime}$ are internal dynamic resistances.
- The interbase resistance, $r^{\prime}{ }_{B B}=r^{\prime}{ }_{B 1}+r^{\prime}{ }_{B 2}$.
- $r^{\prime}{ }_{B 1}$ varies inversely with emitter current, I_{E}
- $r_{B I}^{\prime}{ }^{\prime}$ can range from several thousand ohms to tens of ohms depending o

Circuit Diagram

Observation Table:

Sr. No.	Emitter Current $\mathrm{I}_{\mathrm{E}} \mathrm{mA}$	Emitter Voltage V_{E} volt		
		$\mathrm{V}_{\mathrm{BB}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{BB}}=\ldots \ldots . \mathrm{V}$	$\mathrm{V}_{\mathrm{BB}}=\ldots \ldots . \mathrm{V}$
1	0			
2	0.01			
3	0.02			
\cdots	\ldots			
	0.1			
	0.15			
	0.2			
	0.25			

	0.3			
	\cdots			
	0.5			
	0.6			
	\cdots			
	1.0			
	1.5			
	2.0			

Graph and Calculations: The photon energy is

Results:

The characteristics of the given UJT are obtained, plotted and studied.

EXP. NO.

OPAMP APPLICATIONS
DATE: \qquad

Aim: To study the application of operational amplifier as an adder and as a multiplier.
Apparatus: Power Supply, Resistors, Capacitors, IC 741, CRO, Connecting wires, Frequency Generator (AFO),

Procedure:

1. Connect the AFO output in parallel to the rheostat 1 and 2 as shown.
2. Connect $10 \mathrm{~K} \Omega$ resistor between variable of Rh 1 and input terminal 2.
3. Connect another $10 \mathrm{~K} \Omega$ resistor between variable of Rh_{2} and input terminal 2.
4. Connect the feedback resistor $\left(\mathrm{R}_{\mathrm{f}}\right)$ of $10 \mathrm{~K} \Omega$ between the output (terminal- 6) and the input (terminal-2) of the circuit as shown. Connect the terminal-3 of the input to the ground. Ground the Rheostats also as shown.
5. Apply a sine wave of $1 \mathrm{kHz}, 4 \mathrm{~V}$ from the AFO
6. Check the input voltages $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and output voltage V_{0} using a Voltmeter.
7. Connect the CRO channel-1 to display V_{1} and Channel-2 to display V_{0}.
8. Set the input voltages V_{1} and V_{2} as per observation Table 1 and measure V_{O}.
9. Observe the waveforms on the CRO.
10. Compare the measured output voltage Vo with the calculated value.
11.Similarly set input voltages V_{1} and V_{2} as per Obs. Table 1 and measure V_{0},
11. To study the circuit as a multiplier, keep R_{f} of $20 \mathrm{~K} \Omega$ and repeat the experiment as per part 2.Comple the observations as per observation Table 2.
13.Trace one of the input and its output wave signal on a paper and attach it.

Circuit Diagram

Observation Table:

Obs. No	Input voltage volt		PART 1:ADDER WHEN $\mathbf{R}_{\mathrm{F}}=\mathbf{1 0 K}$ Output V_{o}		PART 2:MULTIPLIER	
	V_{1}	V_{2}	Measured	Calculated	Measured	Calculated
1	1	4				
2	2	4				
3	3	1				
4	4	2				
5	5	1				

Calculated Output voltage $\mathbf{V}_{\mathbf{0}}$ Volt $=V_{o}=\frac{R_{F}}{R}\left(V_{1}+V_{2}\right)$

Results:

The application of operational amplifier as an adder and as a multiplier studied.

> EXP. NO.

OPAMP PARAMETERS
DATE:
:
15
Aim: To determine the parameters of an operational amplifier.
Apparatus: Power Supply, Resistors, Capacitors, IC 741, CRO, Connecting wires, Frequency Generator (AFO),

Procedure:

Circuit Diagram

Observation Table:

Calculations:

Results:

EXP. NO. HIGH RESISTANCE BY LEAKAGE DATE:

16

Aim: To determine the value of a high resistance by the method of leakage using Ballistic Galvanometer.
Apparatus: Ballistic Galvanometer, Damping key, Simple keys, Dry cell, Resistor, Capacitor, Connecting wires.

Procedure:

1. Make electrical connections as shown in the circuit diagram.
2. First, charge the capacitor C for a fixed time (say 30 sec) by pressing key K_{1}.(This time is referred as charging time).
3. Now release key K_{1} and immediately press the key K_{3} so that current from capacitor passes through Ballistic Galvanometer. Record the deflection of the Ballistic Galvanometer on Scale as direct deflection d_{1}.
4. When required use damping key to set the deflection of B.G. at null position.
5. Repeat step -2 and 3 for three times and determine mean d_{1}.
6. Now, charge the capacitor C for a fixed time (say 30 sec) by pressing key K_{1}.(This time is referred as charging time).
7. Now release key K_{1} and immediately press the key K_{2} for 5 sec so that current leakages through resistor R. (This time is referred as time of leakage).
8. Now release the key K_{2} and immediately press key K_{3} so that current from capacitor passes through Ballistic Galvanometer. Record the deflection of the Ballistic Galvanometer on scaleas d_{2}.
9. In this way, repeat the step- 2 to 4 for different time of leakages as mentioned in the observation table keeping same charging time.
10.Record your observation and plot the graph of $\log \left(\mathrm{d}_{1} / \mathrm{d}_{2}\right)$ against Time (t).
11.Perform the calculations using given formula and determine R.

Circuit Diagram:

B.G. : Ballistic Galvanometer
D.K. : Damping Key

C: Capacitor
R: High Resistor
E: Battery (1.5 V)
$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$:Simple keys

Observation Table:

Direct deflection through B.G. (\mathbf{d}_{1} :

1. $\mathrm{d}_{1}=$ \qquad mm,
2. $d_{1}=$ \qquad mm,
3. $\mathrm{d}_{1}=$ \qquad mm, Mean direct deflection: $\mathbf{d}_{1}=$ \qquad mm.

Obs. No.	Time of leakage t sec	Deflection Scale $\mathrm{d}_{2} \mathrm{~mm}$	$\mathrm{~d}_{1} / \mathrm{d}_{2}$	$\log _{10}\left(\mathrm{~d}_{1} / \mathrm{d}_{2}\right)$
1				
2				
3				
4				
5				
6				
7				
8				

9				
10				

Calculations:

The value of capacitor $\mathrm{C}=$

The High Resistance R :

$$
\mathrm{R}=\frac{\mathrm{t}}{2.303 \mathrm{C}} \times \frac{1}{\log \left(\mathrm{~d}_{1} / \mathrm{d}_{2}\right)}
$$

$$
\begin{gathered}
\text { Since slope }=\frac{A B}{B C}=\frac{t}{\log \left(d_{1} / d_{2}\right)} \\
\therefore R=\frac{\text { slope }}{2.303 \times C}=\ldots \ldots \ldots . .
\end{gathered}
$$

Results:

The value of Unknown High Resistance $\mathrm{R}=\ldots \ldots \ldots . . \mathrm{M} \Omega$

EXP. NO.

17

Aim: To design and study 4-bit binary ripple or Asynchronous or serial (i) UP counter and (ii) DOWN counter.

Apparatus: JK FFs(Flip-flops), Clock Pulsar, LEDs, Binary to Decimal

 Decoder.
Procedure:

1. Connect the Pulsar output to the clock input CK of First JK FF i.e. FF0.
2. Connect the output Q0 of First JK FF (FF0) to the clock input CK of second JK FF i.e.FF1.
3. Similarly connect the output Q1 of FF1 to the clock input CK of FF2 and output Q2 of FF2 to the clock input CK of FF3.
4. Now preset all FFs by pressing SW1 switch.
5. Apply HIGH (or 1) inputs to both J and K inputs of all FFs by pressing SW3 switch on the board.
6. Connect the output Q0 of FF0 to the Decoder input A.
7. Similarly connect Q1, Q2, Q3 of FF1, FF2, FF3 to the Decoder inputs B, C and D respectively.
8. Switch ON the board. Press the Decoder switch to ON position.
9. Now press CLEAR switch to clear all FFs.
10. All the LEDs on the output Qs should OFF and \bar{Q} s should be ON. The display will show 0 .
11. Now press the PULSER switch once to apply the First CLOCK pul.
12. Note down the positions of the Qs and decimal number on display in the observation Table.
13. Similarly apply $2^{\text {nd }}, 3^{\text {rd }} \ldots 16^{\text {th }}$ CLOCK pulses and perform the experiment.
14. Draw the timing diagram from the Table.
15. For DOWN counter connect \bar{Q} to next FFs CK and perform the experiment.

Circuit Diagram for 4 bit binary UP Counter:

Note: Make connections shown by dotted line only.

Observation Table:

	UP Counter			DOWN Counter		
	$\begin{gathered} \text { OUTPUT } \\ \text { FFs } \\ \text { Q = } \\ \text { Q3Q2Q1Q0 } \end{gathered}$	Decoder OUTPUT $\begin{gathered} \mathrm{Q}^{\prime}=\mathrm{DCBA} \\ \mathrm{OFF}=0 \\ \mathrm{ON}=1 \end{gathered}$	Decoder Display (Decimal Equivalent)	$\begin{gathered} \text { OUTPUT } \\ \text { FFs } \\ \text { Q= } \\ \text { Q3Q2Q1Q0 } \end{gathered}$	Decoder OUTPUT $\begin{gathered} \mathrm{Q}^{\prime}=\mathrm{DCBA} \\ \mathrm{OFF}=0 \\ \mathrm{ON}=1 \end{gathered}$	Decoder Display (Decimal Equivalent)
1	00000	0000	0	1111	1111	15
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						

15						
16						

TIMING DIAGRAM:

RESULT:

The 4 bit binary UP and DOWN counters are studied.
EXP. NO.

18

BABINET COMPANSATOR
DATE:......

Aim:

Apparatus:

EXP. NO. RESISTIVITY BY CAREY-FOSTER

DATE:

Aim: Determination of the specific resistance of the constantan wire by using the Carey Foster's Bridge method.
Apparatus: Carey Foster's Bridge Testing Unit, Two resistances of equal value (10Ω), Patch cords, Mains Cord.

Procedure:

1. Connect the given resistances R_{P} and $\mathrm{R}_{\mathrm{Q}}(10 \Omega)$ in gaps 2 and 3 .
2. Connect resistances R_{X} and R_{Y} in gap $A(1)$ and $A(4)$.
3. Set the value of both resistances R_{X} and R_{Y} equals to zero.
4. Connect the DC power supply between the point A and C of bridge.
5. Connect the galvanometer between point B and jockey (j)as shown in figure.
6. Switch ON main power supply and switch ON +3 V DC power supply.
7. Touch the jockey (j) on the wire at the end a, and point out the direction of deflection of galvanometer. Now touch the jockey at the second ends of wire b. If the deflection is reversed, it means the connections are correct.
8. Now move the jockey at the middle on the bridge wire and find the null point (zero deflection on galvanometer). Note this reading on scale as xcm .
9.Now exchange the both resistances R_{X} and R_{Y} and again find the null point on galvanometer. Note the reading on the bridge scale as y cm .
9. Now find the applied correction δl by subtracting y from x.
10. Set the value of resistance R_{X} is zero and varies the value of resistance R_{Y}.
12.Find the null point on the bridge wire (zero deflection on galvanometer) by keeping RY equal to $1 \Omega, 2 \Omega, 3 \Omega, \ldots \ldots \ldots \ldots$.etc. and note the reading of 1_{1}
and l_{2} on bridge scale and follow the table.
11. Using the given formula determine the value of resistivity of the given wire

Circuit Diagram:

Observation Table:

Balance point with $\left(R_{Y}=0\right)$ in left gap and $\left(R_{X}=0\right)$ in right gap, $x=\ldots \ldots . \mathrm{cm}$
Balance point with $\left(\mathrm{R}_{\mathrm{Y}}=0\right)$ in right gap and $\left(\mathrm{R}_{\mathrm{X}}=0\right)$ in left gap, $\mathrm{y}=\ldots \ldots . \mathrm{cm}$
Correction to be applied $(x-y)=\delta \mathrm{l}=$ \qquad

Obs. No.	$\begin{gathered} \mathrm{R}_{\mathrm{Y}} \\ \mathrm{Ohm} \end{gathered}$	Position of balance point with unknown resistance in		$\begin{gathered} \text { Shift } \\ \left(1_{1}-l_{2}\right) \\ \mathrm{cm} \end{gathered}$	$\begin{gathered} \text { Correct Shift } \\ d= \\ \left(1_{1}-1_{2}\right)-\delta 1 \end{gathered}$	Resistance per cm $\mathrm{R}^{\prime}=\mathrm{R}_{\mathrm{Y}} / \mathrm{d}$
		Left gap $1_{1} \mathrm{~cm}$	Right gap $1_{2} \mathrm{~cm}$			
1	1					
2	2					
3	3					
4	4					
5	5					
6	6					
7	7					

Mean R' $=$ Ohm
Calculations:

Length of the wire $1=$.cm

Area of cross-section $\mathrm{A}=8.54 \times 10^{-4} \mathrm{~cm}^{2}$
Total resistance of the bridge wire $\mathbf{R}=\mathbf{R}^{\prime} \mathbf{x} \mathbf{l}=$.ohm

The specific resistance i.e. resistivity of the wire,

$$
\rho=\frac{\mathbf{l}}{\mathbf{A}} \mathbf{R}=
$$.ohm • cm

Results:

The resistivity of the wire $\boldsymbol{\rho}=$ $\Omega \mathrm{cm}$

EXP. NO. E BY MILLIKAN'S OIL DROP	
20	EXPERIMENT

Aim:	To determine the charge of electron by Millikan's Oil drop method
Apparatus:	Millikan's Oil drop experiment Unit, Power Supply (0-300V DC), stop watch, Olive Oil.

Procedure:

For the calibration of the graduated scale of eye-piece, focus the microscope on standard scale. Measure the distance between two consecutive divisions of graduated scale.

Insert the pin in central hole of upper plate. Illuminate the pin in such a way that the edge of the pin, when focused in microscope, shines in slightly dark back-ground. Now remove the pin and spray oil in the chamber. Observe the droplets through microscope. These drop-lets are charged due to the friction effect at the nozzle of atomizer. These drop-lets shine like a twinkling star in the dark background.

Connect the upper plate to positive terminal of power supply through key and lower plate to negative terminal of power supply. On applying electrical field, some droplets move in upper direction and some in downward direction. Select one droplet from the whole lot and observe its motion under gravitational field and electrical field.

Now switch off the electrical field and allow the droplet to move under the gravitational field only. Measure the time T_{1} to travel specific distance (i.e. 50 divisions on graduated scale of eye-piece) in normal upward direction. Now apply
electrical field again and measure time T_{2} for the same droplet to travel the same distance (i.e. 50 divisions). Hence calculate the velocities v_{1} and v_{2} for gravitational and electrical field respectively. Calculate charge Q on droplet using following formula.

$$
\mathrm{Q}=6 \pi \eta^{2 / 3} \times\left[\frac{9}{2} \frac{\mathrm{v}_{1}}{(\rho-\sigma) g}\right]^{1 / 2} \times \frac{\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \times 300 \times \mathrm{d}}{\mathrm{~V}}
$$

Where,
$\eta=$ Coefficient of viscosity of air $=1.830 \times 10^{-4}$ poise
$\rho=$ Density of oil $=0.92 \mathrm{gm} / \mathrm{cm}^{3}$
$\sigma=$ Density of air $=0.001293 \mathrm{gm} / \mathrm{cm}^{3}$
d = Distance between two parallel plates of Millikan's chamber $=0.68 \mathrm{~cm}$
$\mathrm{V}=$ Applied voltage $=200$ volts and 250 volts

Precautions:

1. Do not try to touch the plates when DC potential is applied.
2. Do clean the glass slides before starting the experiment.
3. Do not spray oil unnecessarily.
4. In the case of winter keep the automiser in the SUN for a while for its free flow.
5. Do not on DC supply unnecessarily.

Observation Table:

Pot. Diff. Bet. Plates V volt	No. Of Obs.	Time to travel 50 divisions		Terminal Velocity of droplet		Charge Q e.s.u.	Unit charge$\mathrm{n}=\frac{\mathrm{Q}}{\mathrm{e}_{\mathrm{apx}}}$	Charge of electron
		Gravt. Field T_{1} sec.	Ele. Field T2 sec.	Gravt. Field v_{1} $\mathrm{cm} / \mathrm{sec}$	Ele. Field V_{2} $\mathrm{cm} / \mathrm{sec}$			
200V	1							
	2							
	3							
	4							
250 V	1							
	2							
	3							
	4							

Calculations:

Terminal velocity in gravitational field $\mathrm{V}_{1}=\frac{\mathrm{D}}{\mathrm{T}_{1}}=\frac{0.1625 \mathrm{~cm}}{\mathrm{~T}_{1}}$

Terminal velocity in electric field $\mathrm{V}_{2}=\frac{\mathrm{D}}{\mathrm{T}_{2}}=\frac{0.1625 \mathrm{~cm}}{\mathrm{~T}_{2}}$
The total charge Q on droplet

$$
\mathrm{Q}=6 \pi \eta^{2 / 3} \times\left[\frac{9}{2} \frac{\mathrm{v}_{1}}{(\rho-\sigma) g}\right]^{1 / 2} \times \frac{\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \times 300 \times \mathrm{d}}{\mathrm{~V}}
$$

Result:

The charge of electron = \qquad e.s.u.

EXP. NO.

21

MICHELSON INTERFEROMETER

 (d λ - MEASUREMENTS)
DATE:
 \qquad

Aim: To determine the wavelength difference (d λ) of sodium doublet using Michelson's Interferometer.
Apparatus: Michelson Interferometer, Sodium Light Source, convex lens, objectpin.

Procedure:

1. Set the Interferometer for circular fringes.
2. Now very slowly move the mirror M_{1} and observe the variation of intensity of the fringes.
3. Set the M_{1} for minimum intensity of the fringes and record its position as initial reading $\left(\mathrm{X}_{1}\right)$.
4. Now again slowly move the M_{1} untill the intensity reaches to maximum and again becomes minimum.
5. Record this position of M_{1} as final reading $\left(\mathrm{X}_{2}\right)$.
6. Also record this position of M_{1} as initial reading for next step. (i.e $X_{2}=X_{1}$ For next reading)
7. Now slowly move the M_{1} untill the intensity reaches to maximum and again becomes minimum.
8. Record this position of M_{1} as final reading $\left(\mathrm{X}_{2}\right)$.
9. Repeat the above method for further readings.
10. Calculate the d using the given formula.

Construction and Ray Geometry:

Observation Table:

Least Count of Michelson's Interferometer $=\mathbf{0 . 0 0 0 0 1} \mathbf{~ c m}$

Obs. No	Initial reading of Interferometer When Intensity is Minimum $X_{1} \mathrm{~cm}$	Final reading of Interferometer When Intensity is Minimum $\mathrm{X}_{2} \mathrm{~cm}$	Difference Between two Consecutive Minima $\mathbf{t}=\mathbf{x}_{2}-\mathbf{x}_{1}$	$\begin{aligned} & \text { Mean } \\ & \mathbf{t c m} \end{aligned}$	Wavelength difference $d \lambda=\frac{\lambda^{2}}{2 \times t} \AA$
1					

2					
3					
4					
5					

Calculations:

$$
\mathrm{d} \lambda=\frac{\lambda^{2}}{2 \times \mathrm{t}}=\ldots \ldots \ldots \ldots=\ldots \ldots \ldots . \AA
$$

Mean Wavelength difference $\mathbf{d} \boldsymbol{\lambda}=$

Results:

The difference in wavelengths of Sodium doublet is $\mathrm{d} \lambda=\ldots \ldots \ldots \ldots . \AA$

EXP. NO.
22

DETERMINATION OF LATTICE
DATE:
PARAMETERS
(electron diffraction ring pattern)

Aim: To determine the lattice parameters of a crystal system from an electron diffraction ring pattern.
Apparatus: electron diffraction ring pattern photograph, Scale, Calculator.
Procedure:

1. Place the scale on electron diffraction pattern photograph and measure the diameters of rings for different accelerating voltage ($60 \mathrm{kV}, 80 \mathrm{kV}, 100 \mathrm{kV}$).
2. From the given relations; Planck's constant $h=\lambda P$ and the wavelength of electrons $\lambda=\mathrm{R} . \mathrm{d} / \mathrm{L}$, calculate inter-planner spacing $\mathrm{d}=\mathrm{hL} / \mathrm{RP}$ (in $10^{-8} \mathrm{~cm}$).

Data:

1. Distance of Photographic plate from the specimen: $\mathrm{L}=23 \mathrm{~cm}$,
2. Mass of an electron: $\mathrm{m}=9.1 \times 10^{-28} \mathrm{gm}$
3. Charge of an electron: $\mathrm{e}=1.6 \times 10^{-19}$ coulomb
4. Planck's constant $\mathrm{h}=6.626176 \times 10^{-27} \mathrm{erg} \mathrm{sec}$

Accelerating	Momentum	$1 / \mathrm{P}$	$\mathrm{A}=$ Voltage V Volts
$\sqrt{\mathrm{meV} / 150}(\mathrm{gm} . \mathrm{cm} / \mathrm{sec})$		$\mathrm{sec} /(\mathrm{gm} . \mathrm{cm})$	hL / P $\mathrm{sec} /(\mathrm{gm} . \mathrm{cm})$
60×10^{3}			

80×10^{3}			
100×10^{3}			

Observation Table: 1, 2 and 3 ON NEXT PAGE

Results:

Note: Measure diameters by considering inner ring as first ring
Observation Table： 1 For accelerating voltage $V=60 \mathrm{KV}$（Note：Measure diameters by considering inner ring as first ring）．

$\begin{array}{c\|c} \substack{7 \\ \text { II } \\ \text { N } \\ \text { N }} & \text { z} \\ \hline \end{array}$												
乙												
$\begin{array}{ll} 7 & \frac{1}{6} \end{array}$												
$\begin{array}{l\|ll} \text { N } \\ \text { 出 } & \text { 苟 } \\ \hline \end{array}$												
品	\rightarrow	\cdots	m	\checkmark	n	\bullet	N	∞	a	윽	\sqsupset	$\stackrel{\text { I }}{ }$

Note：Find out（hkl）from equation： $\boldsymbol{N}=\boldsymbol{h}^{2}+\boldsymbol{k}^{2}+\boldsymbol{l}^{2}$ ．
Result：Mean $\mathrm{a}^{2}=\ldots\left(\mathrm{A}^{0}\right)^{2}$ ，Lattice Constant $\mathrm{a}=$

